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Non-linear oscillatory systems containing a fast phase and a relatively slow phase are considered. A modified averaging method 

is proposed for the situation in which the slow variables, averaged over the fast phase, do not change. A procedure for separating 

the variables over substantially longer time intervals with respect to a small parameter is proposed and justified; over these extended 

time intervals, all the variables experience considerable evolution. Examples illustrating the efficiency of the proposed approach 

are presented. 0 2002 Elsevier Science Ltd. All rights reserved. 

In non-linear oscillatory systems one frequently encounters situations in which the evolution of the 
osculating variables occurs at different average rates relative to the powers of some natural small 
parameter. A variety of problems are described by such systems: in the theory of oscillations of non- 
linear mechanical systems (oscillators and pendulums), the dynamics of rigid bodies and gyroscopes, 
orbital motions and rotations of natural and artificial celestial bodies, the problem of non-linear standing 
waves in a liquid (parametric resonance), etc. It is of considerable interest, from both theoretical and 
applied points of view, to investigate the evolution of a system over a time interval long enough to allow 
a substantial variation of the osculating variables, including the slowest ones, to occur. 

It turns out that for many important cases one can apply and justify a modified scheme of the 
Krylov-Bogolyubov method of averaging, with separation of motions (by a change of variables [l-3]) 
over relatively longer time intervals. We will consider some approaches to the investigation of oscillatory 
systems in the standard form (in Bogolyubov’s sense) and of systems containing fast and slow phases. 

1. STATEMENT OF THE PROBLEM 

Consider a non-linear oscillatory system in the Bogolyubov standard form [l, 21 

i=Ez(r,z), rzo, z(O) = z”, ZED,, OSESE~~I (1.1) 

The vector valued function Z, of arbitrary dimension n,, is assumed to be sufficiently smooth with respect 
to z E D,, where 0, is some connected set, and piecewise-continuous and 2x-periodic in t (t is the time 
or oscillation phase). The averaged system of the first approximation is constructed in the standard way 
[l, 21 and it is assumed that the averaged equations possess the structural properties defined below 

i=fl&t7), @0)=X0; ij=EYO(t,lJ), q(O)=y’ (1.2) 

z = (xT,yTf, Z(r*z) = (xr(t,x,y>, YT(t,X,y))T 

~95~ 0x9 YJI+, Dz=DxxDy 

and TV are the “averaged” values of these vectors. The special case ny = 0, i.e. x = z, needs separate 
discussion [4], see below. It follows from (1.2) [l, 21 that in the first approximation with respect to E 
the average rate of change of the vector x equals zero, that is, ]x -x0 1 O(E) for l/~, while the 
variable y, generally speaking, varies significantly: Iy - y" ] = 0 (1). It is more convenient to treat the 
equation for TJ in the slow time T = it. 
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For applications, however, one is frequently interested in the behaviour of system (1.1) over an interval 
which is significantly longer with respect to negative degrees of E, say t E I2 (Z, = [0, L/8], k = 0, 1, 
2, . . .), over which the variable x may vary significantly. In the general case it is difficult to solve this 
problem by the method of averaging. We will therefore consider the situation, encountered in applied 
problems, in which the equation for n when 5 = const (5 E D,) admits of a complete family of single- 
frequency periodic solutions in the slow time r [l] 

r)=%(cp~590~ cp=~(5*0r+(P09 Z=Et, n E D, (1.3) 

where 5 and cp” are integration constants and cp is the scalar phase; the dimension of 5, 5 E DC, equals 
ny - 1. The function q. describes oscillatory or rotatory-oscillatory motions and is assumed to be 
2n-periodic in the usual sense [l-3] with respect to cp. The phase cp is a slow variable with respect to t: 
when t - l/i9 it receives an increment 69 - l/&. Thus, on the assumption that conditions (1.2) and 
(1.3) are satisfied, one can formulate the problem of constructing and justifying an averaging scheme 
of higher degree in E, as compared with the standard approach [l-3]. Such a modification of the method 
of averaging was first used in [5] to investigate non-resonance rotations of a triaxial artificial satellite 
in an elliptic orbit. 

2. REDUCTION TO A SYSTEM WITH FAST AND SLOW PHASES 

Following the procedure for a change of variables in [l-3], we apply a transformation (x, y) + (5, rl) 
close to the identity transformation 

x = 6 + EUO, 5, q), Y = q+wf5,q) 

u = j X(s. 5, q)ds, v=~~y(s~5~q)-yo(5.q)lds 
(2.1) 

0 0 

The functions X and Y (X0 = 0, Y. f 0) are defined as in (1.2). 
Differentiating expressions (2.1) along trajectories of Eqs (1.1) we obtain the Cauchy problem 

5 = &*E(t,(,Tj,&), &0)=x0 

il= EYo(5.q1)+E2H(r,5,q,E), q(O) = Y0 

(2.2) 

Ebx=x-(x), EAy= Y-(Y) 

The expressions (X) and (Y) mean that the functionsX and Y are evaluated at x = 5, y = r-l. 
It follows from the relations (2.1) and (2.2) that the right-hand sides of the equations are 2rc-periodic 

with respect to t and sufficiently smooth with respect to 5 E D, and n E Dy, 0 < E s Ea. Up to terms 
O(E~), they are identical with Eqs (1.2). 

We transfer from variables I& t-l to variables 5, 5, cp by means of a non-singular substitution 

(2.3) 

where rla and w are known functions according to (1.3). Let us combine the vectors 5 and 5 into a single 
(nx + nr - 1)-dimensional vector a = (c’, 6’)‘; the standard procedure yields the system with slow scalar 
phase cp 

ti = E*A(t,CX,q,E), a(0) = a’, a,a’cD, 

$I = &W(a)+ E*@(t,CX,qJ,E), q-40) = ‘p” (mod 2~)~ I cp I< 0~ (2.4) 

A = (ET,ZT)T, (@,ZT)T =/I$$, %il’ (H-i??& 
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The component 4 of the vector a is described by Eq. (2.2), into whose right-hand side, that is, the 
function z:, the known expression (2.3) for rlo has been substituted. For the component <, the 
right-hand side of the equation is defined by the function Z; to find it one should invert the matrix 
(~3rl~/d(cp, <)) according to (2.4) which also defines the scalar function 0. The initial values C,(O) = 5’ 
and q(O) = cp” are found from relation (2.3) for 11: y” = qo(‘po, x0, co), where cp” is defined apart from 
27~. The right-hand sides of system (2.4) are smooth functions of a, cp and E and 2rc-periodic functions 
oft and cp. 

To investigate system (2.4) for t E 12, we apply the scheme of separation of slow and fast motions. 
The separation of variables may be incomplete (partial), in which case the system of equations for the 
variables corresponding to a and cp is coupled and the variable t is separated. For further complete 
separation of the variables a and cp one can use the averaged system not containing the argument t. As 
in the classical method of averaging for t E II, the corresponding asymptotic expansions should not 
contain singular terms in the extended interval t E 12. 

3. SEPARATION OF THE FAST PHASE 

Let us regard a and cp as slow variables and the argument t as a fast phase. We transform the variables 
a and cp to p and w, where p and w are quantities averaged over t, governed by equations that do not 
contain t 

a=p+&*n(t,p,w,&)=p+E2n2(t,P,W)+E3n3+...+Eknk+Ek+‘... 

~=~+&2~(t,~,~,E)=~+E2~2(t,~,~)+E3~3+...+E~-’~~_,+Ek... 

fi = E’B(P#,&) = ~*[B,(p,\y)+ EB, +...+Ek-*B,_,] + Ek+’ . . . 

~=EC.0(~)+&*~(~,~,E)=EW(~)+E2[yb(~,~)+&~, +...+Ek-3\y,_3]+Ek... 

ka2, ri,y 10, js 1, a f const 

(3.1) 

The unknown coefficients IIj and Ij of asymptotic expansions (3.1) and the corresponding right-hand 
sides of the equations for p and w are obtained in the standard way [l, 21 by differentiating a and cp 
with respect to t, substituting into (2.4) and equating the coefficients of like powers of E’ 

(I+E*~~~)B+~$,(Ew+E*V)=A(~,~~+E*~I,~+E*T,E)-IX~ 

E3r~B+(I+E2r;)(O(B)+E~)=O(P+E2n)+E~(t,P+E2n,\V+E2r,E)-Er~ 

B= Bo +EB, +a2B2 +..., y=\ib+Ey, +... 

l-I=II*+ElI3+&*II4+..., r=q+Er3+... 

(3.2) 

The unknown functions B, ‘I”, II and I may be determined recurrently from (3.2) to any degree of 
accuracy in E, as determined by the smoothness of the right-hand sides of system (2.4). In particular, 
one can use the procedure of expansion in powers of the parameter E. In this case Eqs (3.2) split at 
each stage and the required expressions have the form 

Bo(P,~)=Ao(p,~)=(A(t,p,ur,O)), ~ot~~cp)=~o(B~W)=(~(t,p,~,O)> 

n2(t,p.~)=j(tA)-Ao)ds, r2(t,p,W)=i((~)-~o)dS 
0 0 

B, =(K)bWNG,>, Y, =((~:))+(o')(n,)-(w)(r;,) 

(3.3) 
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The following coefficients Bi, IIj, ‘Pi and Ij are calculated similarly. They enable us to construct the 
system of equations in any approximation in terms of E for < E Zz for the variables p and w, the slow 
phase w being determined with lower accuracy (with error E’-‘) compared with the variable p. This is 
the case also for the initial variables a and cp. Similarly, as in the classical scheme [l, 21 for constructing 
the jth approximation, the functions IIj+ 1 and Ij will not be needed. Thus, in the first approximation, 
that is, with error O(E) for a and O(1) for cp, we have according to (3.3) 

fi = E*A,(P, w), P(0) = a’, i = EW@), ~(0) = cp’, t E I2 (3.4) 

The construction of the solution is reduced to the integration of the Cauchy problem (3.4); when 
doing so, one can introduce a slow argument z = #, where z E Ii. The right-hand side of the autonomous 
system (3.4) is 2n-periodic with respect to the phase w, w - YE. It is required to integrate these equations 
for z E Zi to within O(E) with respect to the slow variable p and O(1) for the phase w. The system may 
be investigated by qualitative methods on a cylindrical surface. If the function w(p) is bounded away 
from zero in the domain under consideration of variation of p, say w 2 o. > 0, then the desired 
approximate solution for P(&*t) can be found by introducing an argument w, w - l/~, and averaging 
with respect to ~JJ by the standard procedure of the method of averaging. The phase w(E~) is then 
determined from an implicit relationship by a simple quadrature [l-3]. 

The following proposition holds. 

Theorem 1. A solution (exact or approximate) of Cauchy problem (3.4) in the range of variation of 
the slow argument z E Ii determines a solution of problem (2.4) to within O(E) in the slow variable a 
over the interval of the initial argument t E Z2; the variable cp is determined to within O(1). The slow 
variablex of the initial system (1.1) is calculated to within O(E) and the relatively fast variabley to within 
O(1) over the indicated range oft. 

The proof follows from the substitutions (2.1), (2.3) and (3.1) and estimates based on Gronwall’s 
Lemma. The function A in (2.4) is required to satisfy a uniform Lipschitz condition with respect to a 
and to be continuous with respect to cp; the function CD is assumed to be continuous in a and cp; the 
frequency o must satisfy a uniform Lipschitz condition (a E D,, 0 c cp s 2n). The proof is simplified 
if one requires A and o to be differentiable with respect to a E D,. 

Similarly, in the second approximation, to within O(E*) with respect to a andx and O(E) with respect 
to cp andy fort E Z2, one has the following Cauchy problem (see (3.1)-(3.3)) 

P’=EA,(B.w)+E*B,(P,\Y), P(O>=a”. 7tZIl 

w’ = cc@) + Ey6@. Vvx w(O) = ‘PO, z = Et 

(3.5) 

The slow argument z has been introduced into system (3.5) in order to reduce the system with rotating 
phase to standard form. The “perturbing functions” Bi and Y0 are defined in (3.3); this requires a higher 
degree of smoothness of the functions A, w and Cp, that is, of the initial functionsxand Y. It is required 
to construct a solution of the simplified system (3.5) for z E I, to within O(E*) with respect to p and 
O(E) with respect to r+r. To that end, as before, either numerical or analytical methods may be used. 
Once a first-approximation solution has been constructed, a second approximation is constructed by 
perturbation methods on the basis of the variational system [2, 31. 

A similar procedure yields solutions, averaged with respect to t, in any, say the jth, approximation 
with respect to powers of ~,in the range t E Z2. According to (3.1) and (3.2) we have ajth approximation 
system in which terms O(E’+*) are dropped in the equation for the slow vector p and terms O(E’+‘) for 
the slow phase w. Denoting differentiation with respect to the slow argument z = ti by a dot on the 
side, we obtain a standard system in Bogolyubov’s sense [l-3] 

p’ =EAO+&*B, +...+&jB+, p(O)=a’ 

Vv’ =w(p)+E@e+&*Y, +...+&i-‘Yj_,, w(O) = ‘PO 

(3.6) 

We recall that the omitted terms of expansion (3.6) are also 2rc-periodic functions of the fast argument 
t = Z/E. 

Let us assume now that the solution of Cauchy problem (3.6) is constructed to within O(E~) with respect 
to p and O(E’-~) with respect to w. The following proposition holds. 
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Theorem 2. According to (3.1)-(3.3), the functions B(z, E) and w(r, E) determine a solution of Cauchy 
problem (2.4), a(t, E) and cp(r, E), to within O(&)and 0(&‘-i), 

U-U, I-, B. ‘I”, E) (3.7) 

F; = YY(r. P. VI. 0) - Y + EGO, P, w, I-I, I-, [I-l, B, ‘I’, E) 

where the expressions [.I denote linear differential operators with respect to B and w, the required 
functions B and Y in the equations for p and ty and the functions II and F defining the appropriate 
change of variables a and cp to B and \~r (3.1) are constructed by recurrence. At the first step of the 
procedure (for E = 0) we have (see (3.2) and (3.3)) 

B&W = (A(r$,w.W = (A,,,) 

n,(t.p.~)=~(A(s,B.ur.O)-(A~,))dr 
0 

(3.8) 

The next approximations are described by similar relations 

Bj+i (PI ~9 a) = (Act, Pq W-O)+ Wr,P, ~v$,e[n,j,lv r&j,eYcjpE)) 

‘f’j+l@* VP&) = V’(~,ISV,O)+ EG(~,P,w,$,, rcj,,[rcj,l.BV,.Y,j,.E)) (3.9) 

nj+l(f,p,ur*E)=~(A~~)+&~-_(A~o)+EF))dr 
0 

Expansions of formulae (3.9) yield functions which are the coefficients of formulae (3.2). Contrary 
to a well-known assertion [6, pp. 196, 1971, we observe that the construction of the standard scheme 
of successive approximations involves imposing more stringent smoothness conditions on the functions 
A, w and Y with respect to the variables a and cp as the order of the approximation increases. As is 
readily seen from (3.2) (3.7) and (3.9), this is because of the increase in the order of the derivatives 
with respect to the slow variables B and w. At the same time, the integration with respect to t, by (3.9), 
does not increase the degree of smoothness with respect to the independent variables B and w. Using 
successive approximations, we can construct the trajectories of the appropriate perturbed Cauchy 
problem with non-analytic right-hand sides [3]. In the general case, exact separation of variables does 
not occur even for analytic systems, because of “resonance between the slow and fast variables” [7,8]. 

4. REMARKS AND POSSIBLE GENERALIZATION OF 
THE HIGHER-ORDER AVERAGING SCHEME 

1. Let us consider a similar scheme in the case when the coefficients Bi satisfy the following conditions 

X,=B, =B, =...=Bk_s 20, Bk-2 f 0, k23 (4-l) 
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when constructing the averaged system (3.1). This means that the term of order &k in the equation for 
the variable p is non-zero; by virtue of conditions (4.1) we obtain a system of the form 

p = E~B,_,(P,w)+E~+‘B~(~,B,w,E) 

$l=&EW(P)+E2(Ya+&Yr +...+&k-3Y~_,)+&‘lY;(t,~,~,&) (4.2) 

Then, dropping terms O(E~“) in the equation for l3 in system (4.2) and terms 0(~~) in the equation 
for w, we obtain the first-approximation system. Its solution &(t, IX’, cp”, E), wi(t, a’, cp”, E), to 
within O(E) with respect to a and O(1) with respect to cp, determines a solution of system (2.4) in the 
range t E I,. In particular, if o(p) f 0, averaging with respect to cp reduces this system to the form 

fi = E’(B& 

\jr=&c@)-+E2(Ya +&Y, +...+&k-3Yk_))(k_,) =&a&,&) 

(4.3) 

P= P,(E~~,~~)+O(E), w=q” +E;e+k)(,$.a)~r, +0(l) 
0 

The fact that the solution of system (4.3) is close to that of system (4.2) is established by the 
standard method of averaging with respect to the “fast phase” w, after dividing l3 by $. 

2. Similar expansions for the slow variable p and slow phase cp may be carried out in the case 
when o(a) = 0 as well, and the averaged system of type (4.2) has the form 

(4.4) 

where 0 c 1 =S k - 2, k 3 3; in particular, when k = 3,l = 0, we obtain the first-approximation system 

fi = EBB, (P. WX \ir = a2Y& w) (4.5) 

which must be integrated over the interval z E Ii after the slow argument z = &2t has been introduced. 
Assuming that ( Y. 1 2 c > 0, we obtain the following equation for the vector l3 from Eqs (4.5) 

which may be simplified and investigated approximately by the standard procedure of the method of 
averaging (with respect to w). Using the equation averaged with respect to w, one constructs a first- 
approximation solution Pr(~(tlr - cp’), a’) for p, and then uses the relation 

E2t=T=J ,(/3& 7 y) 

to determine the function ye = ~~(2, a', cp') to within O(1) in the interval z E II. After substituting w, 
into the expression for pi one finds the slow vector to within O(E). 

Similar constructions may be carried out in the general case of system (4.4) in the range t E 1,. 
3. Together with the version considered above, in which there is one slow phase (see (1.3) and (2.4)) 

one can investigate a more complicated system, containing a hierarchy of slow phases of the form 

dr = &kA(r,a,cp,&), dima=n, dimcp=mZ=O 

4 =q(a,q2,.... ~m)+~2@l(~,a,~,~) 
$2 =~~o~(a,(p 3,....(Pm)+E3~2(t,a,(P,~) 

. . . 

4, =EmW,(a)+~"+'~,(r,a,cp,&), mGk-1 

(4.6) 
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The functions A, Dj and Oj are naturally assumed to be 2n-periodic with respect to the phases, and the 
constants Oj are non-zero. In the general case, the procedure for separation of variables in system (4.6) 
is extremely complicated. In any specified case, however, one can construct a suitable substitution which 
enables the integration of the slower variables to be separated from that of the faster ones. If m = 0, 
one assumes that the system involves only one fast variable t, with respect to which the equations are 
averaged; it varies in the range t E Ik. Note that in the general case one can also apply the asymptotic 
expansion procedure of the multiple-scales method [9]. 

4. Instead of system (1.1) one can take a system of more general form [l, 2, 81 

i = X(x, E), x(0)=x0, dimx=na2 (4.7) 

which, taken with E = 0, admits of a non-degenerate family of periodic solutions x0(8, a), where the 
scalar phase is 8 = v(u)t + El’, v 3 v. > 0, and a is an m-vector of arbitrary constants from some domain, 
a E D, 1 < m c n -1. If m < II - 1, it is assumed that this family is asymptotically (exponentially) stable 
[l, 21. Then the traditional substitution exists [l, 10, 111 

x=x,(B,a~+~[N(B,a)h+N’(B,o)h*], N;v+NH=(X')N, N;'v+N'H* =(X;)N* (4.8) 

where N is a complex matrix which is a periodic function of 8, h is a vector and the asterisk denotes 
complex conjugation, and this substitution transforms system (4.7) into a system of equations in a certain 
neighbourhood of the local integral manifold 

ci= A(a,B,h,&), u(O)= u", A=O(I&I+Ih1*) 

C)=V(~)+O(U,~,~,E), cl(O) = e”, o=o(l&I+Ihl*) (4.9) 

h=B(a)h+H(u,O,h,~), h(O)= ho, H=O(I&I+Ihl*) 

Under the substitution (4.8) the unknown variablex remains real; the functions& 0 and H in system 
(4.9) are also real. In addition, the characteristic exponents of the matrix B(u) have negative real parts. 
For sufficiently small values of 1 E 1 and 1 ho 1, the solutions tend to a stable integral manifold; in a relatively 
short time, of the order of In 1 E I-l, they approach as close as desired to the manifold described by the 
equation 

h=~,(a,e)+&*h,(u,e)+E3... 

where the functions hi are constructed in the standard way [l, 10, 111. 

(4.10) 

The accuracy of the construction of h(u, 8, E) is determined by the degree of smoothness of system 
(4.9) that is, of the initial system (4.7). After substituting the functions (4.10) into the equations for a 
and 8 and dividing b by 8, one obtains a system of the standard form (1.1) to within the required accuracy 
with respect to powers of E (t = 8 is the argument). Under suitable assumptions, this system may be 
investigated by means of the standard procedure of the method of averaging or higher-order averaging 
schemes, see above. In many cases encountered in applications, the averaged equations for the slow 
variable a may be obtained using integrals of the unperturbed system (4.7) [2, 31. 

5. In the special case of system (2.4) with o(a) = v = const, the variables a and cp may be determined 
to within the same degree of accuracy in E. In this case, one has to construct the coefficients I&-t, Bk_2, 
Ik_t, Yk_2 in expansions (3.2) which leads to the same error O(s!) in determining a and cp in the range 
te Ik;atthesametime, la-a01 - 1, ]cp-cp”] -KY. 
6. The procedure for separating the fast phase t (averaging with respect to t) is carried out by analogy 

with the case of a system of the form of (2.4) in which cp is a vector phase of arbitrary dimensionality 
nV < nY. The transfer from system (2.2) to equations with a slow phase cp by a change of variables of 
type (2.3) is accomplished by similar means. However, the analysis of Eqs (2.4) averaged with respect 
to t, using the procedure (3.1) e.g. systems (3.4)-(3.6), in the case of a vector phase cp in the range 
t E I2 leads to well-known difficulties (“small denominators”) typical of essentially non-linear 
multifrequency systems [l, 2, 81. 

7. When analysing quasi-linear oscillatory systems, one can investigate a resonance situation in which 
one of the frequencies has much larger frequency mismatch than the others. Under suitable assumptions 
regarding the properties of the perturbing effects, averaged overt (see Section 2) the multifrequency 



160 L. D. Akulenko 

system may be reduced to the form of (2.4) where EO = const is the frequency mismatch. This system 
may be simplified and studied for f E Iz using the approach outlined in Section 3; see examples in 
Section 5. 

5. EXAMPLES 

We will present the solution in the first approximation for oscillatory systems of type (1.1) that can be 
represented in the form of (2.4) and are readily investigated using second-order averaging schemes. 

Model example. First, for illustrative purposes, we consider a two-dimensional system of the form 

i = Ef(x,y)sin(f + 8(x,y)), x(0)=x0 

(5.1) 
j = EY(X, y), Y(0) = Y0 

where f, 0 and y are smooth functions of x and y, 2rc-periodic with respect to the slow phase cp = y. 
Applying transformation (2.3) we reduce system (5.1) to the form of (2.4) 

h = E*(f&sin(t+Q)+ jiif3; cos(t+ 8)-f,‘y(cos0-cos(t +e))- 

-flTy(sin(t + e) - sin e)) + E3.. 
(5.2) 

Applying the averaging procedure of Section 3, we obtain equations that do not contain the argument 

&+“(;f* ei + Y(~cos~); 1 , k(O) = x0 
(5.3) 

+ = EY(S. (919 CPU3 = cp” 

The variable cp is not transformed in the first approximation under consideration, and we preserve 
the old notation for this variable. 

Equations (5.3) admit of the introduction of the argument z = EC in the interval z - YE the variable 
5, and together with it also a and X, receive an increment of the order of unity in the general case; the 
slow phase varies by an amount 0(&-l). To investigate Eqs (5.3) one can apply analytical and qualitative 
phase plane methods, as well as numerical methods. If the function y is non-zero, one obtains the 
standard equation for the derivative dudq, and this equation can be dealt with using the classical 
averaging procedure with respect to cp in the interval cp - l/c. In the first approximation with respect 
to E, we obtain the equation 

(5.4) 

which admits of separation of variables and integration in quadrature. As a result one obtains expressions 
for the unknown solution to within O(E) in the range t E 12, of the following form 

(5.5) 

It is assumed in (5.4) and (5.5) that B f 0. These relations indicate that if t - E-~, the variablesx and 
y evolve significantly. The standard procedure over the interval t - 
X = X0 + O(E),); = &y(XO,y) + 0(E2). 

YE leads to simpler expressions: 

Forced quasi-linear oscillations. Let us consider perturbed periodic motions of a non-linear oscillator 
in dimensionless variables 
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ij f Q(q) = P(t) - A4 Q(O) = 0 (5.6) 

taking place in a small neighbourhood of the point q = cj = 0, where q is a generalized coordinate and 
4 is the velocity; the restoring force Q is assumed to be a fairly continuous function. The two-frequency 
action P(t) is assumed to be small and a 2n-periodic function oft; A > 0 is a small dissipation coefficient, 
which is assumed to be constant. We introduce a small parameter E > 0 characterizing these assumptions. 
We have 

j+v*y=&Y(t,y,j,E); q = Ey, v* = Q’(0) > 0 

Y=hSi”2f+ay2+E(fSin(f+x)+py3-_~)+E2... 

P = E2h sin 2r+ E3 f sin(t + x) (5.7) 

a=+“(O), P=-ie”(O), h=~~h 

The real parameters h,f, cc, f3, x, h and v are assumed to be of the order of unity, with v close to 
unity: v = 1 + cy, y - 1. Changing to amplitude-phase variables in system (5.7) we have 

a = EA(f, a, w, E), A s -Fsin v 

y=acosv, j=-asinv, a>0 

IjJ = l+&Y(t,a,~,E). ‘I’ 3 -Fa-’ cosy (5.8) 

F= Y-2yY-Ey’y 

Instead of the phase v, we introduce the mismatch 9 = w - t and represent system (5.8) in the form 
of Eqs (1.1) for which properties (1.2) are valid: ((A)) = 0, ((Y)) = y. An expression of the form (e) 
means that we are considering the function F with E = 0. By virtue of the above relations for the averages 
((A)) and NY)), a substitution of type (2.1) yields a system of the form (2.4) 

~=E*((A;)U~+(A;)V~+(A;)-U&~)+E~... 

6=EY+E2..., a=5fEuo, 8=6+Ev, 

iJ, = - 
( 

th(sin3rcos8+(l-cos3t)sin@+&sin26-sin2(f+6))+ 

+f~~(cos36-coss(1+6)) 
) 

v, = - !$(I--cos3f)cos8-sin3fsin8)- 

(5.9) 

After averaging the equation for 5 in (5.9) with respect to 1, one obtains a first-approximation system 
of type (3.4) 

i=E2(-$ y2~-~fcos(x-8)-~IE,+$hycosS+y2{sin26-cxfi2cos2Gsin8 , 
1 

C(O) = a” (5.10) 

ii=q, 6(O) = cp”; t E 12 

Further simplification of system (5.10) involves averaging the equation for 5 with respect to 6, according 
to the approach outlined in Section 3, for y - 1. As a result one obtains a very simple equation, linear 
in 5, integration of which yields the desired first-approximation solution 
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(5.11) 

It is interesting to observe that the frequency mismatch EY leads to additional damping of the 
oscillations, irrespective of its sign. For the range t E II the standard averaging procedure gives 
5 = .O + U(E). 

Parametric oscillations of a pendulum. Consider the two-dimensional oscillations of a physical 
pendulum whose suspension point is being moved in a given way [3]. In standard notation and terms, 
we have the equation of motion 

Jti + Mgl sin a = -M/(x,, cos a + j;, sin a) - A& (5.12) 

Let us assume that the acceleration (&, j+,) of the suspension point in the (x, y) plane varies periodically 
with frequency v. Then, replacing the time argument t by the phase 0 = vt, we bring equation (5.12) 
to dimensionless form 

a”+(N2 +&h”(O))sina =-U(@cosa-~‘ka’ (5.13) 

where the primes denote differentiation with respect to 0 and the small parameter E characterizes the 
magnitude of the accelerations of the pendulum axis along the x and y axes and the smallness of the 
reduced dissipation coefficient A. 

Equation (5.13) describes a large class of forced and parametric rotatory-vibratory motions of the 
pendulum, which have been investigated in a large number of publications. Considerable attention has 
been devoted to the case of fast vibrations of the suspension point (N - E); below we will consider the 
problem of parametric small oscillations under the following assumptions (y, x = const) 

a=Ez. h” = - cos 28, N=2+q, s”= -4E2dsin(29+ x) 

z”+(4-~~0~28)~=-4&yz-~~ -fz3+4dsin(28+x) +e3... 
> 

(5.14) 

According to relations (5.14) parametric oscillations are being investigated in an s-neighbourhood 
of the second resonance zone. Standard methods convert system (5.14) to a system with rotating phase 
w, similar to system (5.8). We have 

d = we. a. Y, E), 2 =acosyI, A=-;Fsinv 

~8 = 2 + &we, 4 W, E), 2’ = -2asin y, Y =-;Fa-‘cosry 

F=z(cos20-4y)-e(4y2z+k’-iz3+4dsin(20+x)) 

(5.15) 

The substitution \v = 28 + cp brings system (5.15) to the form of (1.1) for which conditions (1.2) are 
satisfied: ((A))e = 0, ((Y))s = y. The slow variable a and phase cp are subject to a transformation of 
type (3.1), which yields separation of the argument 8 to within O(E) for 8 - 1/1?. We obtain the following 
relations, similar to (2.1)-(2.4) 
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(5.16) 

Then, averaging the right-hand side of the equation for 5 with respect to the explicitly occurring argument 
0, we obtain the aforementioned system (3.1), which is however very cumbersome. When y - 1 (“far” 
from parametric resonance), after averaging with respect to the slow phase 6 with the same relative 
error, we obtain the expressions 

a=4=a”exp 
E2 ( 1 -+I +0(E), S=&@+O(l), e-f (5.17) 

It follows from these expressions that there will be no significant (i.e. of the order of O(1)) parametric 
and external effect on the oscillations of system (5.14) at t - 1b2, provided the frequency mismatch is 
my, y - 1. The amplitude of the oscillations decays exponentially with respect to 8, with exponent -‘/2~~h. 
Of course, the situation changes radically if y - E, since under that condition the system will experience 
parametric and external resonances [4], due to vertical and horizontal vibrations, respectively, of the 
suspension point. Thus, investigating the oscillations of a pendulum with moving suspension point in 
the range t E Z2, one observes mechanical effects due to significant evolution of the slow variables. These 
cannot be established by using the standard approach (t - YE). 
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